Publications

Single Electron Transfer between Sulfonium and Tryptophan Enables Site-selective Photo Crosslinking of Methyllysine Reader Proteins.

Feng, F.#; Gao, Y.#; Zhao, Q.#; Luo, T.; Yang, Q.; Zhao, N.; Xiao, Y.; Han, Y.; Pan, J.; Feng, S.; Zhang, L.; Wu, M.*

Nat. Chem. 2024, accepted




Facile Semisynthesis of Histone H3 Enables Nucleosome Probes for Investigation of Histone H3K79 Modifications.

Zou, K.; Xiao, Y.; Yang, J.; Wu, M.*

Chin. Chem. Lett. 2024, accepted





Deciphering Histone H4 Lysine Acetylation and Methylation Via Sortase-Mediated Semisynthesis.

Xiao, Y.; Zou, K.; Yang, J.; Wu, M.*

Cell Rep. Phys. Sci. 2023, 4 (11),101638.






Glucose-induced CRL4COP1-p53 Axis Amplifies Glycometabolism to Drive Tumorigenesis.

Su, Y.; Luo, Y.; Zhang, P.; Lin, H.; Pu, W.; Zhang, H.; Wang, H.; Hao, Y.; Xiao, Y.; Zhang, X.; Wei, X.; Nie, S.; Zhang, K.; Fu, Q.; Chen, H.; Huang, N.; Ren, Y.; Wu, M.; Chow, B. K. C.; Chen, X.; Jin, W.; Wang, F.; Zhao, L.; Rao, F.

Mol. Cell 2023, 83 (13), 2316-2331.e7.



Structure of a SIN3–HDAC Complex From Budding Yeast.

Guo, Z.; Chu, C.; Lu, Y.; Zhang, X.; Xiao, Y.; Wu, M.; Gao, S.; Wong, C. C. L.; Zhan, X.; Wang, C. 

Nat. Struct. Mol. Biol. 2023, 30, 753–760.



A General Method to Edit Histone H3 Modifications on Chromatin Via Sortase-Mediated Metathesis.

Yang, Q.; Gao, Y.; Liu, X.; Xiao, Y.; Wu, M.*

Angew. Chem. Int. Ed. 2022, 61(52), e202209945.


undefined



Histone H2B Deacylation Selectivity: Exploring Chromatin's Dark Matter with an Engineered Sortase.

Wang, Z. A.#; Whedon, S. D.#; Wu, M.#; Wang, S.; Brown, E. A.; Anmangandla, A.; Regan, L.; Lee, K.; Du, J.; Hong, J. Y.; Fairall, L.; Kay, T.; Lin, H.; Zhao, Y.; Schwabe, J. W. R.*; Cole, P. A.*

J. Am. Chem. Soc. 2022, 144 (8), 3360-3364.





Lysine-14 Acetylation of Histone H3 in Chromatin Confers Resistance to the Deacetylase and Demethylase Activities of an Epigenetic Silencing Complex.

Wu, M.; Hayward, D.; Kalin, J. H.; Song, Y.; Schwabe, J. W.; Cole, P. A.

eLife 2018, 7, e37231.





Inositol Polyphosphates Intersect with Signaling and Metabolic Networks Via Two Distinct Mechanisms.

Wu, M.; Chong, L. S.; Perlman, D. H.; Resnick, A. C.; Fiedler, D.

Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (44), E6757-E6765.




Elucidating Diphosphoinositol Polyphosphate Function with Nonhydrolyzable Analogues.

Wu, M.; Chong, L. S.; Capolicchio, S.; Jessen, H. J.; Resnick, A. C.; Fiedler, D.

Angew. Chem. Int. Ed. 2014, 53 (28), 7192-7197.





Synthesis and Characterization of Non-hydrolysable Diphosphoinositol Polyphosphate Second Messengers.

Wu, M.; Dul, B. E.; Trevisan, A. J.; Fiedler, D.

Chem. Sci. 2013, 4 (1), 405-410.





2,3,6-Trideoxy Sugar Nucleotides: Synthesis and Stability.

Wu, M.; Meng, Q.; Ge, M.; Bai, L.; Zhou, H.

Tetrahedron Lett. 2011, 52 (44), 5799-5801.










Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang Province, China 310030
Est. 2019 浙ICP备18025489号